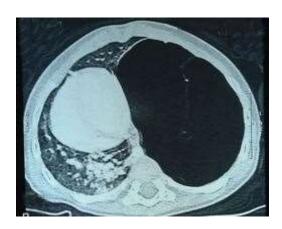
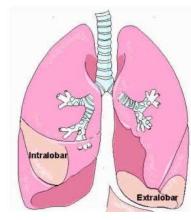
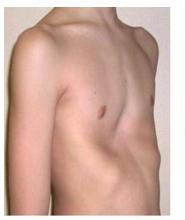

INTRODUCTION


- Douleur aigue sévère qui dure quelques jours
- Retentissement de la douleur sur les différentes fonctions surtout ventilatoire
- Gestion multimodale de la douleur post op
- L'ALR pierre angulaire de l'analgésie multimodale

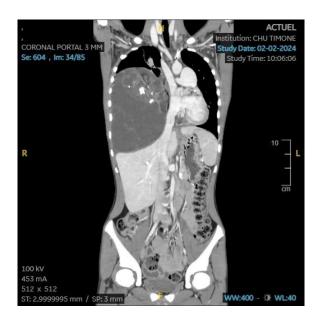

Pathologies principales

Pathologies congénitales pulmonaires

- <u>Lésion kystique adénoïde</u>: présence de kystes multiples au sein d'un lobe pulmonaire
- <u>Séquestration pulmonaire</u> : anomalie lobaire avec une exclusion d'une partie du parenchyme pulmonaire
- Emphysème lobaire congénital : malformation dystrophique bronchique qui se comporte lors de la ventilation comme une valve unidirectionnelle.
- Kyste bronchogénique : cavité kystique bordée d'un épithélium bronchique, avec des glandes bronchiques au contenu mucoïde.



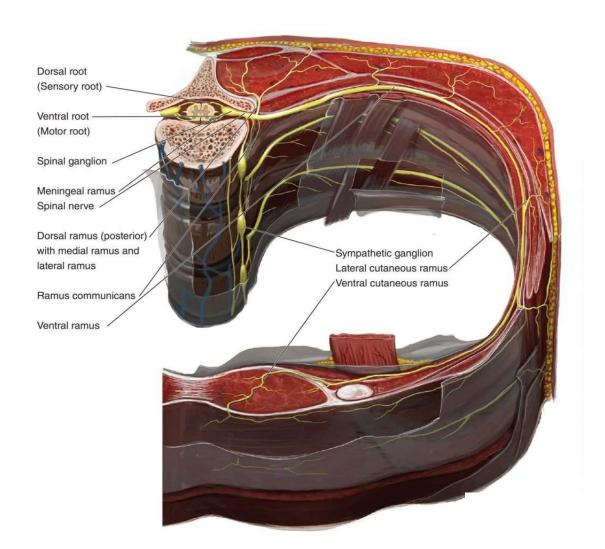
Pathologies principales


Malformations thoraciques

- Thorax en entonnoir ou pectus excavatum
- Thorax en carène ou pectus carinatum

Tumeurs

La douleur thoracique

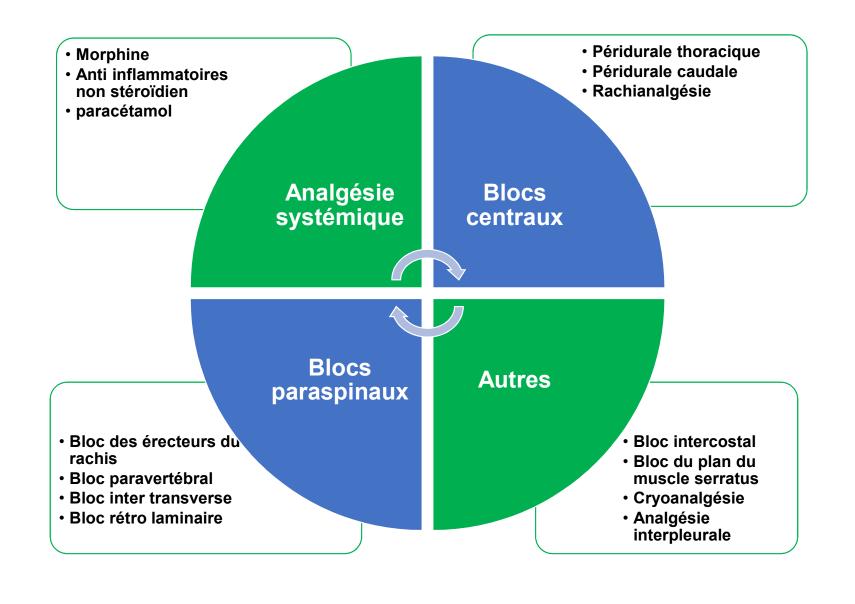

Dura mater Sympathetic ganglion Azygos vein The boundaries of the Vertebral body Spinal cord TPVS are as follows: Gray and white Anterio-lateral – Parietal pleura rami communicantes Parietal pleura Paravertebral Medial – Posterolateral Spinal ganglion vertebral body, the Transverse Lung vertebral disc, and the process vertebral foramen and Ventral ramus spinal nerve (intercostal n.) Posterior – The SCTL Lateral – The posterior Epidural space intercostal membrane and the intercostal Dorsal nerve space Costotransverse Superior/inferior - The ligament heads and necks of the ribs Dorsal ramus Erector spinae m. Spinous process

Les composants de la douleur thoracique

- Douleur pariétale: en relation à la stimulation ou à la lésion des nerfs intercostaux. Plusieurs muscles peuvent être intéressés (intercostaux, grand dorsal, trapèze, rhomboïde)
- **Douleur viscérale**: l'origine de la douleur est une lésion de la plèvre pariétale (rameaux pleuraux des nerfs intercostaux).
- Douleurs projetées: irritation de la muqueuse bronchique, irritation plevrale

Medial, intermediate and lateral supraclavicular nerves (C3,4) T2 3 T3 4 5 6 7 7 8 8 9 Lateral cutaneous branches of thoracic nerves Lateral cutaneous branches of thoracic nerves

INNERVATION DU THORAX



Physiopathologie de la douleur en chirurgie thoracique

LESION DES NERFS INTERCOSTAUX

DOULEURS MUSCULAIRES DOULEURS OSSUESES

NOCICEPTION VISCERALE

Les règles de sécurité

Avant le bloc

Bloc périphérique 0,3 à 0,5ml/kg/bloc

Bloc du tronc 0,2 à 0,3ml/kg/bloc

Bloc de la face et du périnée 0,1 à 0,2ml/kg/bloc

INTOXICATION AUX ANESTHÉSIQUES LOCAUX **EN PEDIATRIE**

TOXICITE CARDIAQUE

☐ Souvent au premier plan car toxicité neurologique masquée par l'AG

- · Tachycardie / bradycardie
- · BAV et élargissement du QRS
- · Hypotension / Collapsus
- · Arrêt cardiorespiratoire

TOXICITE NEUROLOGIQUE

- ☐ Signes précoces:
- Goût métallique / dysesthésies bucco-linguales / dysarthrie / malaise / céphalées / vertiges, nausées / acouphènes / secousses musculaires
- ☐ Signes de toxicité systémique:
- Céphalées, paresthésies, perte de conscience, convulsions, coma
- ☐ Toxicité immédiate si injection intravasculaire
- ☐ Toxicité retardée (jusqu'à 40 minutes) si résorption (selon le site)
- ☐ Doses max : Lidocaïne : 6 mg/kg Mépivacaïne : 5 mg/kg Ropivacaïne : 3 mg/kg Lévo-bupivacaïne: 3 mg/kg - Bupivacaïne: 2 mg/kg

APPEL A L'AIDE STOP Chirurgie

TRAITEMENT : dès la suspicion

- Arrêt de l'injection d'anesthésiques locaux
- Contrôle des voies aériennes :
 - Oxygénothérapie ou FiO₂ = 1 et hyperventiler (pour limiter l'acidose)
 - · Intubation si ACR ou convulsions généralisées
- Réanimation cardio-respiratoire en cas d'ACR :
 - Massage cardiaque externe
 - Pas de doses importantes d'adrénaline (débuter par 1 à 5 µg/kg)
 - · Amiodarone (5 mg/kg IVL) si arythmie ventriculaire (pas de lidocaïne)
- ☐ Traitement des convulsions : Benzodiazépine en première intention (Midazolam 0.2 mg/kg IV)
- ☐ Traitement par émulsion lipidique à 20 % :
- ☐ Intralipide 20 %: 1,5 ml/kg en bolus sur une minute, puis perfusion 0,25 ml/kg/min. Répéter le bolus initial si persistance du collapsus (1 à 2 fois à 5 minutes d'intervalle) et augmenter le débit à 0,5 ml/kg/min. Dose max 10 ml/kg en 30 minutes
- ou Medialipide 20 %: 6 à 9 ml/kg en bolus, à répéter à 5 minutes si collapsus persistant
- ☐ Envisager ECMO si inefficacité du traitement et ACR réfractaire
- ☐ Surveillance monitorée pendant minimum 6 heures
- Dosage du toxique (prélèvement tube sec)
- Déclaration évènement indésirable grave

Réalisée en 2019 par le CAMR et ADARPEF, mise à jour en 2022

Références: RFE SFAR 2016 ALR perinerveuse https://ble.org/wp-content/uploads/2019/10/rfe-anesthesie-loco-regionale-perinerveuse.pdf American Society of Regional Anesthesia and Pain Medicine Local Anesthetic Systemic Toxicity checklist: 2020 version. Reg Anesth Pain Med 2021;46:31-82

Quels moyens pour prévenir et traiter la douleur post-opératoire ?

Les principaux blocs disponibles:

- Péridurale thoracique
- Bloc paravertébral
- Bloc des érecteurs du rachis
- Bloc caudale

Thérapie intraveineuse multimodale:

- Morphine
- AINS
- Paracétamol

Les approches de la péridurale thoracique et de la caudale

Péridurale thoracique

Péridurale Caudale

Analgésie péridurale par voie caudale

L'histoire

CLINICAL REPORTS

69:265-269, 1988

Thoracic Epidural Anesthesia Via Caudal Route in Infants

ADRIAN T. BÖSENBERG, F.F.A.(S.A.),* BARRY A. R. BLAND, F.F.A.R.C.S.,† OTTHEINZ SCHULTE-STEINBERG, M.D.D.A. (McGILL), John W. Downing, F.F.A. (S.A.)§

TABLE 9 Clinical Data of Patients in Phase 3

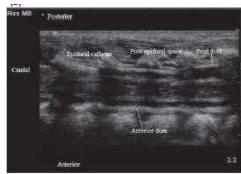
No. Age in Weeks Wt.		Age in Weeks Wt. in kg Diagnosis		Catheter	Position of Tip Aim T7-T8 Level	Dose in MI 0.5% Bupivacaine
1	4	4.1	Biliary atresia	м	Т8	2
2	8	4.5	Biliary atresia	M	T7	2.5
3	12	5.9	Biliary atresia	M	T9	3
4	16	4.8	Biliary atresia	C	T8	3
5	8	4.5	Biliary atresia	M	T7	2.5
6	12	4.5	Neonatal hepatitis	C	T7	2.5
7	11	4.4	Biliary atresia	C	Т8	3.0
8	16	4.3	Biliary atresia	M	T7	2.25
9	10	6.0	Biliary atresia	M	Т8	3
10	8	6.5	Choledochal cyst	C	Т7	3
11	16	5.6	Biliary atresia	C	Т9	3
12	6	2.8	Biliary atresia	C	T9	1.5
13	14	5.0	Biliary atresia	C	T8	2.5
14	12	4.1	Biliary atresia	C	T7	2
15	12	5.7	Biliary atresia	C	T12*	3.5
16	6	2.7	Neonatal hepatitis	C	T8†	1.6
17	22	6.0	Choledochal cyst	C	T8	3.5
18	12	6.1	Biliary atresia	C	T9	3.0
19	16	5.0	Biliary atresia	C	T8	2.5
20	12	4.0	Biliary atresia	C	T8	2.0

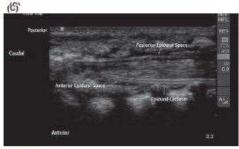
M = Medican; C = Contiplex.

+ Blood in catheter-subsequently cleared.

L'actualité (l'échographie)

DOI: 10.1111/par.13212


RESEARCH REPORT


WILEY Pediatric Anesthesi

Does ultrasound guidance add accuracy to continuous caudal-epidural catheter placements in neonates and infants?

Vrushali C. Ponde Vinit V. Bedekar Ankit P. Desai | Kiran A. Puranik

(B) Epidural catheter as seen in posterior epidural space. (C) Epidural catheter seen in anterior epidural space

^{*} Held up 1.5 cm short of calculated distance.

Analgésie péridurale

Pediatric Anesthesia

Pediatric Anesthesia ISSN 1155-5645

ORIGINAL ARTICLE

Continuous chloroprocaine infusion for thoracic and caudal epidurals as a postoperative analgesia modality in neonates, infants, and children

Giorgio Veneziano^{1,2}, Peter Iliev¹, Jennifer Tripi¹, David Martin^{1,2}, Jennifer Aldrink^{3,4}, Tarun Bhalla^{1,2} & Joseph Tobias^{1,2}

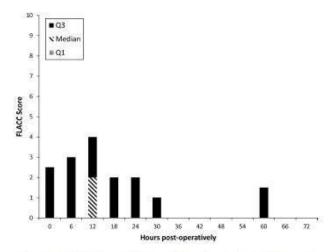


Figure 5 FLACC (Faces, Limbs, Activity, Cry, Consolability) as the first quartile (Q1), median, and third quartile (Q3) scores every 6 h starting from the initial postoperative assessment.

Table 1 Partient demographics, primary diagnosis, surgery, epidural catheter insertion level, depth of threaded catheter at the skin, and confirmed level of catheter tip with method used for confirmation

Age	Weight (kg)	Gender	Primary diagnosis	Surgery	Epidural/placement level/depth/tip location
2 M	2.54	F	Tracheoesophageal fistula, choledochal cyst	TEF/EA repair, hepaticojejunostomy	T910, 5 cm at skin, tip at T7 (CXR)
11 D	3.3	F	Left upper lobe congenital lobar emphysema	Left upper lobectomy	T89, 4 cm at skin, tip at T7-8 (CXR
4 D	2.154	м	Left congenital cystic adenomatous mailformation on the lung	Left upper libe Labectomy	Sacral hiatus, 9.5 cm at skin, tip at T11 (CXR)
2 M	3.9	м	Gastros chisis status post jejunostomy and mucous fistula	Colostomy, ileastomy clasure	T8, 7 cm at skin, tip at T6 (CXR)
14.6	7.32	M	Ekine modele	Waston researches of free	TS. 7 cm at skin
1 D	1.73	М	Trache cesophageal fistula	Trachecesophageal fistula repair	Sacral hiatus, 11.5 cm at skin, tip at 17-8 (US)
44 D	1.4/		Jaunidos and chosocoras cyst	Cridedocha cyst	Sacra matus, 11 cm arskin, rip at 17 (US)
3 Y	15.5	2.6	Stage IV neuroblas toma	Exploratory laparotomy and	T89, 5 cm at skin, tip at 17 (CXR)
2 M	4.6	м	Left thoracic paraspinal mass	resection of retroperitoneal mass Resection of paraspinal mass	Sacral hiartus, 17 cm at skin, tip at 15 (US)
B D	3.5	F	Liver mass, mesenchymal	Wedge resection left lobe and	Sacral hiatus, 13 om at skin, tip at
			hamartoma of the left lung	resection of hepatic mass	T10 (US)
5 M	5.82	М	Right suprarenal mass	Exploratory laparotomy with resection of right suprarenal mass	Sacral hiatus, 14 cm at skin, tip at 17-8 (US)
13 M	7.45	F	Giant omphalocele with ventral herne	Repair of giant abdominal wall hernia	T11-12, 7 cm at skin, tip at T11 (CXR)
B M .	6.2	М	Large incisional hernia, inguinal hernia	Incisional fernia repair, inguinal hernia repair	T9-10, 4.5 cm
7 M	9.35	M	Abdominal neuroblastoma	Ex Lap with liver wedge biopsy	T89,9 cm at skin
5 M	5.5	м	Hartmann's pouch with leastorny and mucous fistula	Takedown of Hartman's pouch, mucous fistula revision	T10, 6 cm at skin
ВМ	7.78	F	Spinal muscular atrophy	Open Nissen fundoplication and gastrostomy tube placement	T8, 7 cm at skin, tip at T4 (CXR)
3 M	5.18	М	Left suprarenal mass	Exploratory laparatomy, removal of suprarenal mass	Sacral histus, 19 cm at skin, tip to 17 (US)
S M	8.53	M	4th degree burn to left leg	LBKA, skin grafting Larm	Sacral hiatus, 6 cm at skin
25 D	4.32	F	Choledochal cyst	Roux-en-Y hepaticojejunos tomy	T89, 4.5 cm at skin, tip at T4 (CXF
1 D	3	F	Duodenal atresia	Duodenalatresia repair	T8, 5.5 cm at skin
2 M	4.52	м	Bliary atresia	Kasai procedure	Sacral hiatus, 14.5 cm at skin, to at 17 (US)

CXR, chest radiograph, US, ultra sound.

Distances dure mère - moelle

RESEARCH REPORT

WILEY Pediatric Anesthesia

Dura to spinal cord distance at different vertebral levels in children and its implications on epidural analgesia: A retrospective MRI-based study

Tariq Wani^{1,2} | Ralph Beltran² | Giorgio Veneziano² | Faris AlGhamdi¹ |
Hatem Azzam¹ | Nahida Akhtar¹ | Dmitry Tumin² | Yasser Majid¹ | Joseph D. Tobias²

TABLE 1 Comparisons of distance from dura to spinal cord at various levels according to patient gender

Levels	Female (n = 32) Mean, mm (SD; range)	Male (n = 56) Mean, mm (SD; range)		
T _{e-T}	5.9 (1.7; 3.5-9.9)	5.9 (1.5; 1.4-9.3)		
T ₉₋₁₀	4.9 (1.3; 24-7.1)	5.0 (1.2; 12-8.1)		
L ₃₋₂	3.4 (1.2; 1.5-6.5)	3.7 (1.2; 12-6.8)		

SD, standard deviation

88 enfants < 8 ans Âge: 51 +/- 20 mois Taille: 101 +/- 14 cm

Poids: 17 +/- 8 kg

Problèmes liés aux cathéters

Journal of Anesthesia (2022) 36:335-340 https://doi.org/10.1007/s00540-022-03048-5

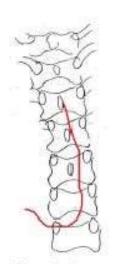
ORIGINAL ARTICLE

Sex. M:F

Age (year), mean ± SD (range)

Paths of thoracic epidural catheters in children undergoing the Nuss procedure for pectus excavatum repair

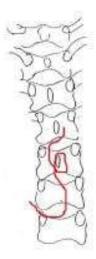
Kanna Nakamura¹ · Ayanori Sugita² · Shuichi Sekiya² · Akira Kitamura³ · Hiromasa Mitsuhata¹ · Keisuke Yamaguchi¹ · Masakazu Hayashida⁴


7.8 ± 2.3 (4-12)

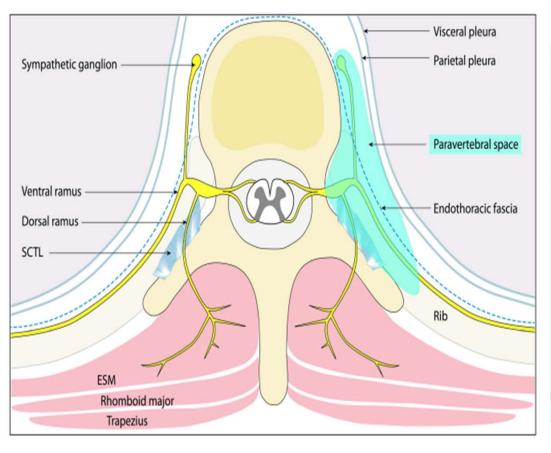
Received: 26 April 2021 / Accepted: 23 January 2022 / Published online: 4 March 2022 to The Author(s) 2022

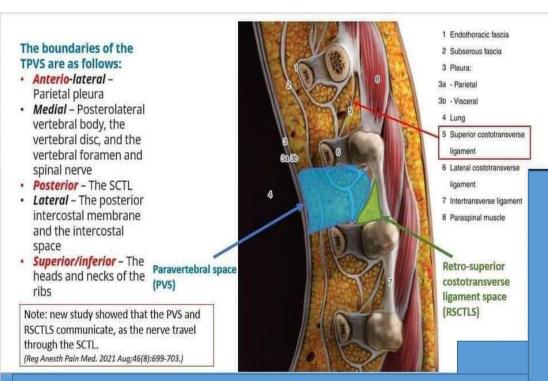

Table 1 Demographic and catheterization data for children who underwent the Nuss procedure for pectus excavatum repair under combined general and epidural anesthesia.

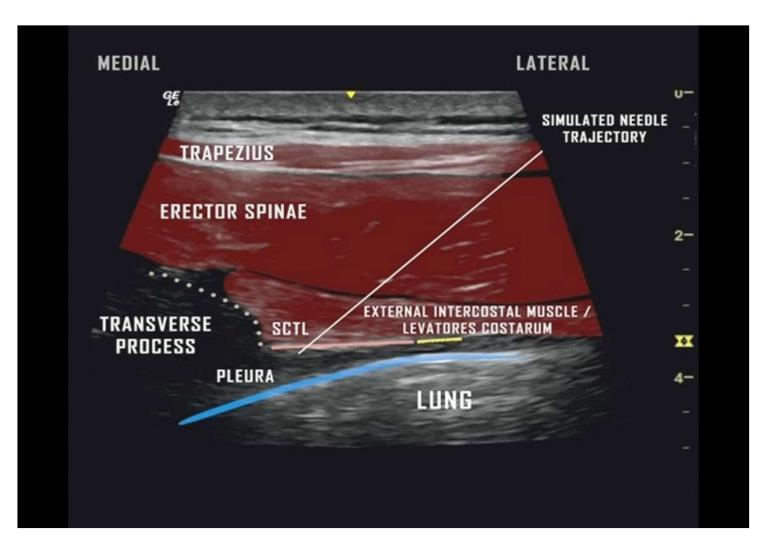
Body height (cm), mean ± SD (range)	128±13 (102-159)
Body weight (kg), mean ± SD, (range)	24.5±7.2 (16-47)
Intended insertion points	T5/6 (n=62), T6/7 (n=11)
Median [quartiles] (range)	T5/6 [T5/6, T5/6] (T5/6-T6/7)
Actual skin insertion points	T3/4 (n=3), T4/5 (n=19), T5/6 (n=38), T6/7 (n=13)
Median [quartiles] (range)	TS/6 [T4/5, TS/6] (F3/4-T6/7)
Actual epidural space insertion points	T3/4 (n = 5), T4/5 (n = 20), T5/6 (n = 35), T6/7 (n = 13)
Median [quartiles] (range)	T5/6 [T4/5, T5/6] (T3/4-T6/7)
Catheter direction immediately after entry in the epidural space	Cephalad (n=72), Caudad (n=1)
Catheter tip direction	Cephalad (n=67), Caudad (n=6)
Catheter tip position (vertebral level)	C6 (n=1), C7 (n=4), T1 (n=7), T2 (n=12), T3 (n=23), T4 (n=18), T5 (n=7), T7 (n=1)
Median [quartiles] (range)	T3 [T2, T4] (C6-T7)
Number of vertebrae crossed by catheter tips	5 (n=1), $4.5 (n=5)$, $4 (n=15)$, $3.5 (n=1)$, $3 (n=13)$, $2.5 (n=10)$, $2 (n=14)$, $1.5 (n=10)$, $1 (n=2)$, $0.5 (n=1)$, $-0.5 (n=1)$
Median [quartiles] (range)	+2.5 [+2,+4] (-0.5 to+5)


Data are expressed as number, mean ± standard deviation (range), or median [quartiles] (range)

Straight path (completely straight)




Curved path (with two turns)


Coiled path
(with one coil)

Les approches du bloc paravertébral

Les approches du bloc paravertébral

Regional Anesthesia and Acute Pain Medicine

Section Editor: Richard Brull
BRIEF REPORT

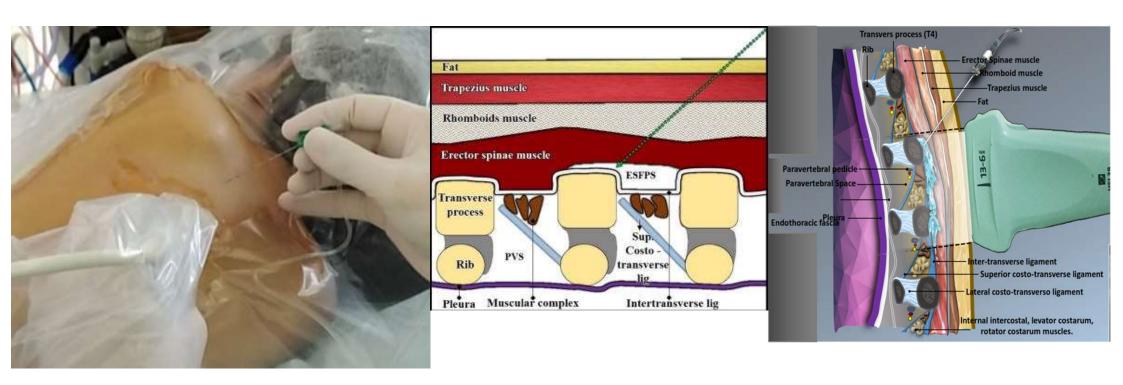
Thoracic Paravertebral Nerve Blocks in Pediatric Patients: Safety and Clinical Experience

Tricia Vecchione, MD,* David Zurakowski, PhD,* and Karen Boretsky, MD*†

Table 2.	Distribution of	PVNB Patients	s by Age
	Catheters Patients, n (%)	Patients, n (%)	
	n = 468	n = 403	Weight (SD), kg
Infant	111 (23.7)	21 (5.2)	4.7 (2.9)
Toddler	46 (9.8)	35 (8.7)	12 (1.2)
Child	149 (31.8)	121 (30.0)	24.9 (10.0)
Adolescent	162 (34.6)	226 (56.1)	54.3 (18.1)

Abbreviations: PVNB, paravertebral nerve block; SD, standard deviation.

Cathéters positionnés entre T3 et T12


BPVT est une alternative valide à la morphine 1 complication sévère: enfant de 9 mois 9,4 kg perfusion de ropivacaine 0,1 % 0,2 ml/kg/h pour 16 heures. Crise épileptiques et désaturation d'O2 après bolus de chloroporocaine 3% sans conséquences.

Continuous Catheters (n	= 468)	Single-Injection PVNBs (n = 403)			
Procedure	Number of Patients (%)	Procedure	Number of Patients (%		
Thoracotomy	118 (25.2)	Laparoscopy; misc	187 (46.4)		
Video-assisted thoracoscopy	81 (17.3)	Breast reduction	52 (12.9)		
Laparotomy; miscellaneous	74 (15.8)	Robotic; misc	48 (11.9)		
Pectus excavatum	33 (7.1)	Video-assisted thoracoscopy	35 (8.7)		
lleostomy/colostomy/colostomy takedown	31 (6.6)	Laparoscopic or open orchiopexy	13 (3.2)		
Iliac crest graft harvest	27 (5.8)	Colostomy/ileostomy/colostomy takedown	9 (2.2)		
Laparoscopy; miscellaneous	21 (4.5)	Periacetabular osteotomy	8 (2.0)		
Open nephrectomy/pyeloplasty	31 (6.6)	Ventral hernia	6 (1.5)		
Rib graft harvest/resection	18 (3.8)	Rib resection	4 (1.0)		
Ventral hernia	6 (1.3)	Laparotomy; misc	4 (1.0)		
Renal transplant	5 (1.0)	Inguinal hernia	4 (1.0)		
Lung transplant	4 (0.9)	Other	33 (8.2)		
Periacetabular osteotomy (combined with lumbar plexus)	4 (0.9)				
Other	15 (3.2)				

Abbreviation: PVNB, paravertebral nerve block.

Children's Hospital Pittsburgh 625 catheters were performed on 468 patients

Bloc des érecteurs du rachis

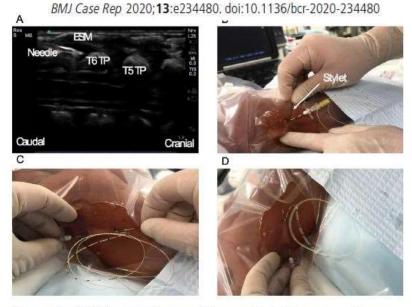
Bloc continu des érecteurs du rachis

J Med Cases. 2024;15(1):26-30

Continuous Erector Spinae Plane Block for Pain Management Following Thoracotomy for Aortic Coarctectomy

Jay D. Holladay^{a, c}, Christopher McKee^{a, b}, Olubukola O. Nafiu^{a, b}, Joseph D. Tobias^{a, b}, Ralph J. Beltran^{a, b}

Table 1. Reports of ESPB Following Thoracotomy or Sternotomy in the Pediatric Population


Authors and reference	Study type and demographics	Treatment and outcomes
Kaushal et al., 2020 [5]	Prospective, randomized study. Study cohort of 80 children with acyanotic CHD for surgery with sternotomy and CPB.	Bilateral ESPB versus no block (control). Patients who received an ESPB had reduced MOPS, required significantly less, and had a prolonged time to postoperative fentanyl needs, and a lower postoperative sedation score. Ultrasound-guided bilateral ESPB was a reliable and effective postoperative analgesic modality for pediatric cardiac surgery through a midline sternotomy.
Macaire et al., 2020 [8]	Randomized, double-blind, placebo-controlled trial. Study cohort included 50 children following cardiac surgery with midline sternotomy.	Bilateral ESPB with 0.2% ropivacaine infusion versus saline infusion. Morphine requirements and intraoperative sufentanil were reduced in the ESPB group. Time to chest tube removal, first mobilization, pain scores (VAS) 2 h after chest tube removal, pain scores (VAS) at rest 1 month after surgery, and postoperative adverse events were decreased in the ESPB group. ESPB resulted in a decrease in intraoperative and postoperative opioid consumption, optimized rapid patient mobilization, and chest tube removal after cardiac surgery.
Singh et al, 2022 [10]	Prospective randomized controlled trial. Study cohort included 40 children 2 - 7 years of age, scheduled for right or left thoracotomy under general anesthesia.	TEA versus ESPB analgesia. Intraoperative fentanyl requirements were greater in the TEA group when compared to the ESPB group while postoperative fentanyl requirements were comparable. The median FLACC score was equivalent between both groups. Higher incidence of adverse effects with TEA. ESPB provided similar postoperative analgesia to TEA with a lower incidence of adverse effects in pediatric patients undergoing thoracotomy.

CHD: congenital heart disease; CPB: cardiopulmonary bypass; ESPB: erector spinae plane block; MOPS: modified objective pain score; VAS: visual analogue scale; TEA: thoracic epidural anesthesia; FLACC: Face, Legs, Activity, Cry, Consolability.

Bloc des érecteurs du rachis

Erector spinae catheter for post-thoracotomy pain control in a premature neonate

Anna Swenson Schalkwyk, ¹ James Flaherty, ¹ Donavon Hess, ² Balazs Horvath [©] ¹

Figure 1 (A) Ultrasound image of the needle in the erector spinae muscle plane. (B–D) Tunnelling the catheter away from the surgical field by using the 20-gauge Tuohy needle and stylet to create a subcutaneous conduit for the catheter. ESM, erector spinae muscle; T6TP, thoracic 6 transversus process; T5TP, thoracic 5 transversus process.

Âge 2 jours, poids 2,250 kg, 35 semaines. Cathéter à T5-T6, chloroprocaine 3% 2 ml. Perfusion: 0,25 ml/kg/h (3,75 mg/kg/h)

Turkish Journal of Anaesthesiology & Reanimation

Continuous Erector Spinae Plane Block in Paediatric VATS: A Case Series

Vishal Saxena , Harick Shah , Swarup Ray , Amrit Kaur , Raylene Dias Department of Anaesthesiology, Seth GS Medical College and KEM Hospital, Mumbai, India Department of Paediatric Anaesthesia, SRCC Children's Hospital, Mumbai, India Department of Paediatric Anaesthesia, Seth GS Medical College and KEM Hospital, Mumbai, India

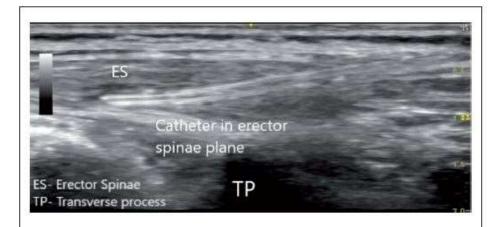
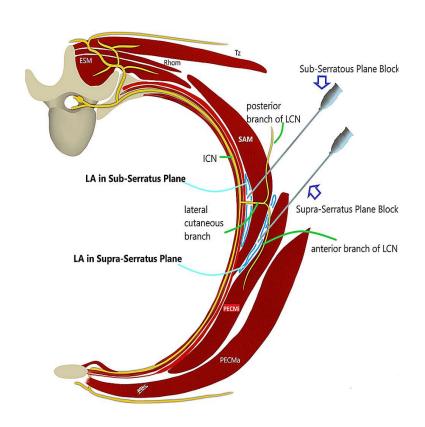
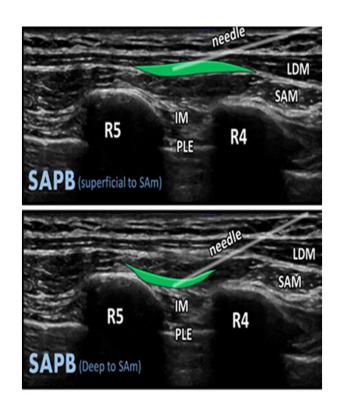




Figure 1. Catheter in the erector spinae plane which lies between erector spinae muscle above and the transverse process of vertebra below.

Âge 1,5-8 ans, cathéter 20 G, bupivacaine 0,125 % 0,3 ml/kg, Perfusion bupivacaine 0,125 % 0,25/0,3 ml/kg/h

Le bloc du plan du muscle serratus / Serratus plane block

BMJ Paediatrics Open

Single-injection serratus anterior plane block for cardiothoracic surgery via thoracotomy in children: a systematic review and meta-analysis of randomised controlled trials

Yi He,1 Zhi Li,2 Mingzhe Xu,1 Bin Du,1 YunXia Zuo 601

Reference Year	Subjects number	Type of surgery	Local anaesthetic administered	Control	Age	Primary outcome	Adverse event	Pain scale
Gado et al ¹⁵ 2022	70	Unilateral thoracotomy	Bupivacaine 0.125% 0.4 mL/ kg; unilateral SAPB	No block	6 months to 3 years	Postoperatively fentanyl in 24 hours	PONV	FLACC
Kaushal et al ¹⁹ 2019	72	Cardiac surgery through a thoracotomy	Ropivacaine 0.2% 3 mg/kg; unilateral SAPB	ICNB	6 months to 10 years	MOPS	NS	MOPS
Chen et al ¹⁸ 2022	58	Costal cartilage harvest through a thoracotomy	Ropivacaine 0.25% 3 mg/kg; bilateral SAPB	(5-12 years	NRS	PONV opioid-related adverse	NRS
Jing et al ¹⁶ 2020	150	Cardiac surgery through a thoracotomy	Ropivacaine 0.2% 3 mg/kg; unilateral SAPB	Sham block	2-8 years	FLACC	PONV	FLACC
Xiao and Ma ¹ 2021	68	Cardiac surgery through a thoracotomy	Ropivacaine 0.3% 0.5 mg/ kg; unilateral SAPB	No block	1-5 years	FLACC	PONV	FLACC

FLACC, the face, legs, activity, cry, consolability behavioural tool; ICNB, intercostal nerve block; II, incision infiltration; MOPS, modified objective pain scoring method; NRS, numeric rating scales; NS, not statistically significant; PONV, postoperative nausea and vomiting; SAPB, serratus anterior plane block.

A

	. 5	APB	and a	C	ontrol			Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI
Ahmed Ali Gado2022	8.4	0.15	35	0.63	0.15	35	40.3%	-0.23 [-0.30, -0.16]
Chunmei Chen2022	0.77	0.13	29	1.04	0.16	29	39.1%	-0.27 [-0.35, -0.19]
Jing CHEN 2028	0.75	0.39	100	1.2	0.51	50	20.6%	-0.45 (-0.61, -0.29)
Total (95% CI)			164			114	100.0%	-0.29 [-0.38, -0.20]
Heterogeneity Tau* = 0	0.00; Ch/	= 6.0	5, df = 2	(P = 0	05), 1*	= 67%		CONTRACTOR CONTRACTOR
Test for overall effect: Z								

B

				C	ontrol			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
2.1.1 static pain score	s 1h afte	er extu	bation						
Ahmed Ali Gado2022	1.9	0.7	35	3.9	1.6	35	21.7%	-2.00 [-2.58, -1.42]	-
Chunmei Chen2022	0.9	0.67	29	0.93	0.7	29	25.3%	-0.03 [-0.38, 0.32]	
Jing CHEN 2020	1.7	0.68	100	1.9	0.65	50	26.9%	-0.20 [-0.42, 0.02]	
PingPing Xiao2021	2.82	0.58	34	3.24	0.61	34	26.2%	-0.42 [-0.70, -0.14]	
Subtotal (95% CI)			198			148	100,0%	-0.60 [-1.17, -0.04]	
Heterogeneity: Tau* = 0	0.30; Chf	= 36.	39, df=	3 (P <	0.0000	1); P=	92%		
Test for overall effect, 2	= 2.09 (P = 0.0	(4)			971(6)			
2.1.2 static pain score	s after 4	-6h af	ter ext	ubation					
Ahmed Ali Gado2022	2.3	1.1	35	3.8	1.7	35	28.6%	-1.50 [-2.17, -0.83]	
Jing CHEN 2020	2.4	0.99	100	3.9	0.93	50	35.5%	-1.50 [-1.82, -1.18]	
PingPing Xiao2021	2.59	0.7	34	3.15	0.5	34	36.0%	-0.56 [-0.85, -0.27]	
Subtotal (95% CI)			169			119	100.0%	-1.16 [-1.87, -0.45]	
Heterogeneity: Tau* = (.35, Chi	= 20.	19, df=	2(P < 1	0.0001); [= 9	0%		
Test for overall effect. Z	= 3.19 (P = 0.0	101)						
2.1,3 static pain score	s after t	2h aft	er extu	bation					
Chunmei Chen2022	3.52	1.3	29	5.1	1.15	29	28.5%	-1.58 [-2.21, -0.95]	
Jing CHEN 2020	3.2	1.14	100	3.7	1.07	50	35.0%	-0.50 [-0.87, -0.13]	
PingPing Xiao2021	1.44	0.61	34	1.68	0.68	34	36.4%	-0.24 (-0.55, 0.07)	
Subtotal (95% CI)			163			113	100.0%	-0.71 [-1.35, -0.08]	
Heterogeneity: Tau# = (26: Chi	= 13	99 df=	7/0-1	n none	5- FF = 9	696	(6)	

418 enfants, chirurgie cardiothoracique, SABP = bloc du plan du serratus antérieur A consommation post-opératoire d'opiacés B évaluation de la douleur à H 1-4-6-12

Confrontation des blocs pour la thoracotomie

Can Ultrasound-Guided Erector Spinae Plane Block Replace Thoracic Epidural Analgesia for Postoperative Analgesia in Pediatric Patients Undergoing Thoracotomy? A Prospective Randomized Controlled Trial

Swati Singh, Roshan Andaleeb, Dusu Lalin

Department of Anesthesiology and Intensive Care, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India

© 2022 Annals of Cardiac Anaesthesia | Published by Wolters Kluwer - Medknow

Table 1: Demographic data of the studied groups

	Thoracic epidural analgesia (TEA) n=20	Prector spinae plane block (ESPB) n=20
Age (years)	4.45±0.9	4.4±1.35
Gender (M/F)	15/5	15/5
Weight (kg)	15.6±3.6	14.7±3.2
Duration of surgery (min) Type of surgery, n (%)	168.3±28.3	172.0±26.8
Lobectomy segmentectomy	13 (65%) 7 (35%)	14 (70%) 6 (30%)

Data presented as mean ± SD or patient's number or number (percentage)

Table 3: Comparison of FLACC scores in the studied group in median and interquartile range

Time points	Thoracic epidural analgesia (TEA) n=20	Plane block Group (ESPB) n=20	U-value and z-score	P-value
0 h	1 [2, 1]	2 [2, 1]	139.5 -1.62301	0.105
2 h	1 [2, 1]	2 [2, 1]	154 -1.23078	0.218
4 h	1 [1.75, 1]	2 [2, 1]	135 -1.74473	0.081
6 h	1 [1.75, 1]	2 [2, 1]	117.5 -2.21811	0.026*
8 h	1 [1.75, 1]	2 [2, 1]	137 -1.69063	0.091
12 h	1 [1.75, 1]	1.5 [2, 1]	157 -1.14963	0.250
24 h	1 [1, 1]	1.5 [2, 1]	130 -1.87998	0.060

^{*}P-value < 0.05 is significant. Mann-Whitney U test applied

Table 2: Perioperative analgesia consumption in the study groups

	Thoracic epidural analgesia (TEA) n=20	Erector spinae plane block group (ESPB) n=20	Relative risk	t-Statistic and P value (95% confidence limit)
Total intraoperative fentanyl (µg) Postoperative fentanyl consumption (µg)	35.4±11.44 44±2.82	30.4±9.08 44.25±13.72		t-value - 1.530, P value- 0.134 t-value -0.02412 P-value -0.981
Number of patients who required fentanyl (%)	2 (10%)	4 (20%)	2.000	P-value- 0.3899 (0.4119-9.7119

Data presented as mean ±SD or number (percentage)

	Thoracic epidural analgesia (TEA) n=20	Erector spinae plane block group (ESPB) n=20	Relative risk	t-Statistic and P value (95% confidence limit
Urinary retention	4 (10%)	0 (0%)	5.0000	1.060 P=0.2891 0.2551 to 98.0032
Hypotension	8 (40%)	0 (0%)	17.0000	1.992 P=0.0463 (1.0469 to 276.0432)

Confrontation des blocs pour la chirurgie de Nuss

World Journal of Pediatric Surgery

Pain management for the Nuss procedure: comparison between erector spinae plane block, thoracic epidural, and control

Lisgelia Santana 0, 1 John Driggers, Norman F Carvalho

Table 1 Demographic characteristics and outcomes among three groups who received erector spinae plane (ESP) block, thoracic epidural (TE), and patient-controlled analgesia (PCA)

Variables	ESP block (n=19)	TE (n=41)	PCA (n=18)	P value
Sex, n (%)				
Male	19 (100)	33 (80)	15 (83)	0.122
Female	0 (0)	8 (20)	3 (17)	
Age*	15.6±1.8	15.0±2.2	15.4±1.3	0.505
Opioid use (MME)*	66.9±48.8	117.0±81.1	172.1±103.9	<0.001
Length of stay*	3.3±0.5	4.7±0.9	3.7±1.2	<0.001
Pain ratings (NPRS)*	4.5±1.5	3.4±1.5	4.1±1.5	0.029
ED visit, n (%)				
Yes	2	2	2	0.616
No	17	39	16	
Readmission, n (%)				
Yes	0	1	1	0.563
No	19	40	17	
Refill, n (%)				
Yes	5	11	5	0.995
No	14	30	13	

P values are obtained by χ^2 test or ANOVA analysis. For variables that are fewer than five patients in the subgroup, Fisher's exact test was applied.

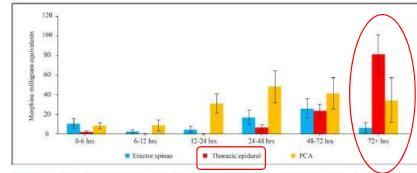


Figure 1 Average opioid use over time in patients receiving an erector spinae plane block, thoracic epidural, or patientcontrolled analgesia (PCA) with error bars showing 95% Cls.

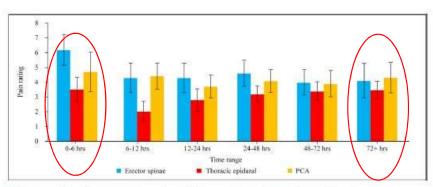


Figure 2 Average pain ratings over time in patients receiving an erector spinae plane block, thoracic epidural, or patient-controlled analgesia (PCA) with error bars showing 95% CIs.

^{*}Data were presented as mean±SD.

ED, emergency department; MME, morphine milligram equivalent; NPRS, Numeric Pain Rating Scale.

Les doses anesthésiques de sécurité

Pediatric Anesthesia 2005 15: 739-749

doi:10.1111/j.1460-9592.2004.01550.x

Pharmacokinetics and efficacy of ropivacaine for continuous epidural infusion in neonates and infants

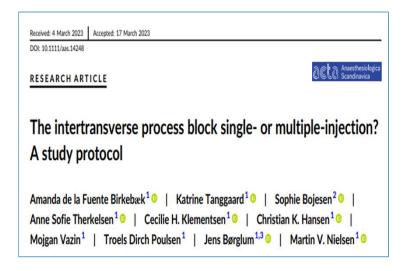
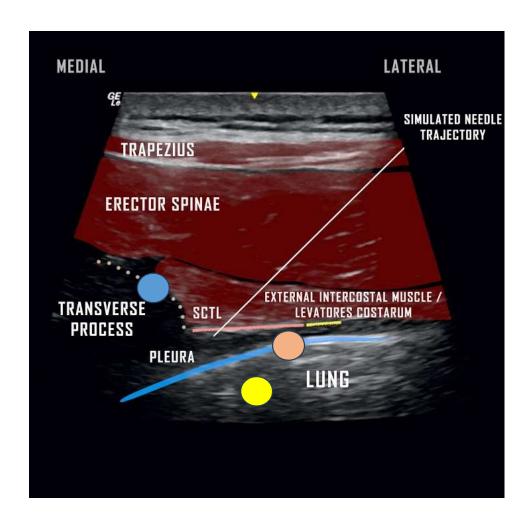

ADRIAN T. BÖSENBERG MB ChB FFA*†, JENNY THOMAS MBChB FFA†, LARISSA CRONJE MBChB FCA†, TESSA LOPEZ MB BS FRCA (ENG)†, PETER M. CREAN MB BCh FFA RCSI‡, URBAN GUSTAFSSON PhD§, GUNILLA HULEDAL MSC PHARM§ AND LARS E. LARSSON MD PhD§

Table 1 Patient details

		Age groups (days)				
Variable	Value	0-30 (n = 11)	31-90 (n = 10)	91–180 (n = 10)	181-365 (n = 14)	Total (n = 45)
Age (days)	Median (range)	2 (0-7)	64 (41–86)	146 (105–176)	276 (199–362)	116 (0-362)
Weight (g)	Median (range)	3300 (2600-4400)	4390 (3140-5900)	5800 (3120-6640)	7430 (4920–10 900)	5300 (2600–10 900)
ASA	Class I	0	0	1	2	3
	Class II	8	7	8	11	34
	Class III	3	3	1	1	8
Sex	Male	7	6	4	5	22
	Female	4	4	6	9	23

Conclusion: Epidural infusions (0.2–0.4 mg·kg⁻¹·h⁻¹ ropivacaine) provided satisfactory pain relief in neonates and infants under 1 year. As plasma concentrations of unbound ropivacaine were not influenced by the duration of the infusion, ropivacaine can be safely used for postoperative epidural infusion for 48–72 h. Levels of unbound ropivacaine were higher in the neonates than in the infants, but were below threshold concentrations for CNS toxicity in adults (≥0.35 mg·l⁻¹). This should not preclude the use of ropivacaine infusions in neonates but suggests a need for caution during the first weeks of life.

Perspectives


Défini en 2021 comme faisant partie des blocs paraspinaux .

Expérience actuelle: patients > 18 ans

Original research

Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks

Cet article représente le premier consensus international sur la nomenclature et les descritpions anatomiques des blocs de paroi abdominale, thoraciques et paraspinaux.

Reg Anesth Pain Med 2021;46:571-580

Chest wall	15	Superficial serratus anterior plane (SAP) block (80%)	Injection in the plane superficial to the serratus anterior muscles (52%)		
	16	Deep serratus anterior plane block (SAP) (91%)	Injection in the plane between the posterior surface of the serratus anterior muscle and the periosteum of the rib (76%)		
	17	Superficial parasternal intercostal plane (PIP) block (90%)	Injection in the plane superficial to the internal intercostal muscles and ribs and deep to the pectoralis major muscle (83%)		
	18	Deep parasternal intercostal plane (PIP) block (85%)	Injection in the plane between the internal intercostal and the transversus thoracis muscles (83%)		
	19	Interpectoral plane (IPP) block (73%)	Injection in the plane between the pectoralis major and pectoralis minor muscles (94%)		
	20	Pectoserratus plane (PSP) block (53%)	Injection in the plane between the pectoralis minor and serratus anterior muscles (76%)		
Paraspinal	11	Paravertebral block (PVB) (96%)	Injection in the paravertebral space (between the superior costotransverse ligament and parietal pleura) in the thoracic region (98%)		
	12	Intertransverse process (ITP) block (58%)	Injection in the tissue between two transverse processes, posterior to the superior costotransverse ligament or halfway between the posterior aspect of the transverse process and the pleura. (86%)		
	13	Erector spinae plane (ESP) block (100%)	Injection in the plane between the erector spinae muscles and the transverse process (98%)		
	14	Retrolaminar block (RLB) (89%)	Injection in the plane between the erector spinae muscles and the lamina (91%)		

